

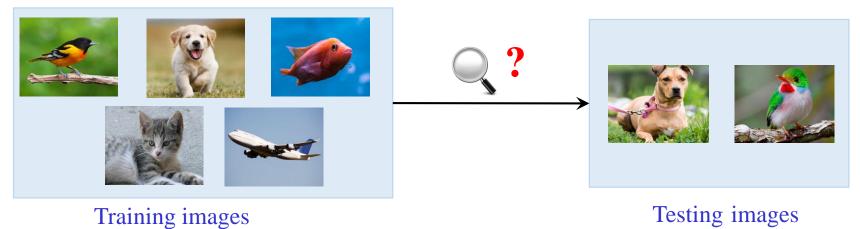
TAdaNet: Task-Adaptive Network for Graph-Enriched Meta-Learning

Qiuling Suo¹, Jingyuan Chou², Weida Zhong¹, Aidong Zhang²

¹University at Buffalo, ²University of Virginia

Introduction

- Limited Training Data
 - Image Classification •



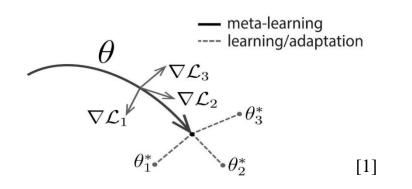
Disease Prediction ٠

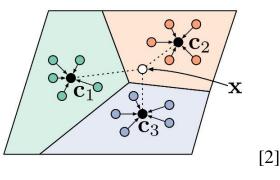
Patients with different diseases

New patients

Introduction

- Meta-learning
 - Learn transferable knowledge from multiple training tasks and generalize to new tasks with limited supervised experience
 - An effective approach for few-shot learning
- Popular methods
 - Learn global initializations, metric or optimizers
 - Assume the globally shared information can be transferred across all tasks





[1] Finn Chelsea, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. ICML 2017.[2] Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning. NeurIPS 2017.

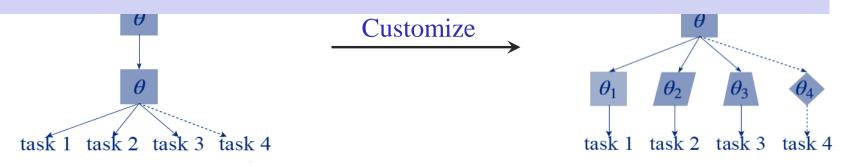
Challenges

Task heterogeneity

- Task distributions can be diverse
- Global parameters may not well handle tasks with different underlying distributions

Recent approaches

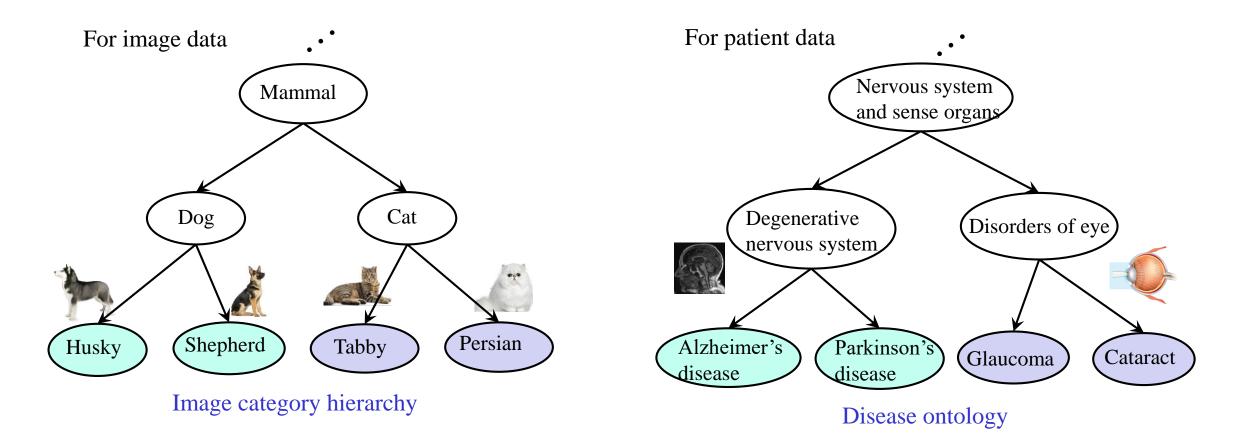
- Learn task embeddings by aggregating data examples or handcrafted structure
- Customize global initializations or metric with task-specific conditioning
- Rely purely on data itself to learn task-relationships



Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li. Hierarchically Structured Meta-learning. ICML 2019 Vuorio R, Sun SH, Hu H, Lim JJ. Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation. NeurIPS 2019.

External Knowledge

Domain knowledge often exhibits in the form of graphs.In the meta-learning setting, a task contains several classes that are represented as nodes in the graph.



Our Method

Incorporate domain knowledge represented in the graph

Enrich data representation

• Allow message passing across nodes of the given category graph for representation learning

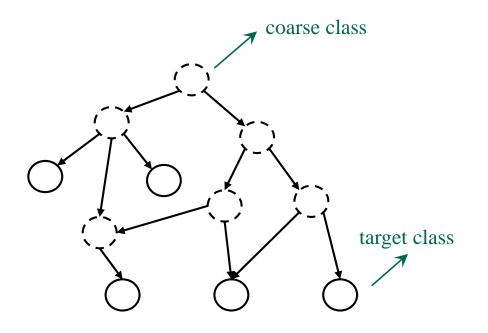
Enhance task relationships

• Produce task-aware parameter adjustment based on task embeddings

Method: Problem Setting

A task \mathcal{T}_i

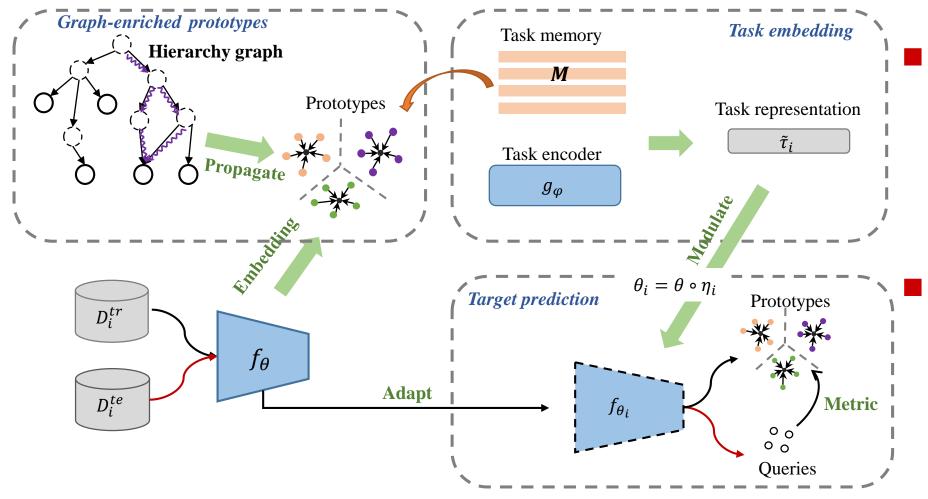
- Sampled from a complex distribution p(T)
- Contain support set D_i^{tr} and query set D_i^{te}
- *N*-way *K*-shot classification
- Hierarchy graph
 - Node: class
 - Edge: parent -> child relationship
 - Leaf nodes: few-shot target classes
 - Ancestor nodes: coarse classes



Assumptions

- A task is considered more similar to another task sharing nodes in the graph, than the one that has disjoint classes with it.
- Similar tasks should share more information and have similar model parameters.

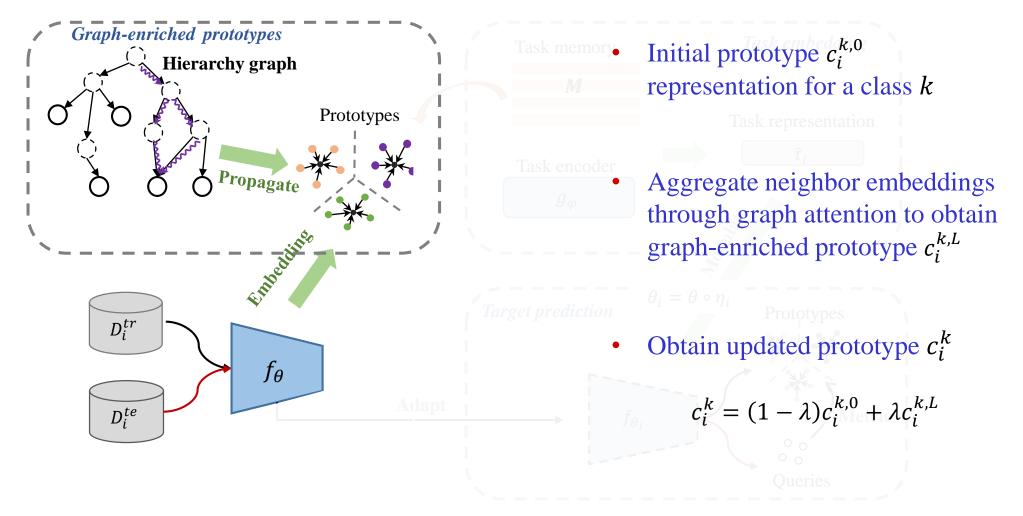
Overall framework



Leverage the information on hierarchy graph and transferable knowledge from related tasks

Learn task-adaptive metric space for target prediction

Learn graph-enriched prototype representations



- Learn task-embeddings
- Aggregate support examples in each task with mean pooling $\tau_i = \frac{1}{NK} \Sigma g_{\phi}(x_{i,j})$ Prototypes Task memory Prototypes Task memory Task embedding Task representation $\tilde{\tau}_i$
- Regularize the embeddings not far away from graphenriched prototypes

$$\mathcal{L}_{c}(\mathcal{T}_{i}) = \sum |c_{i}^{k} - \frac{1}{n_{i}^{tr,k}} \sum g_{\phi}(x_{i,j})|_{F}^{2}$$

Target prediction

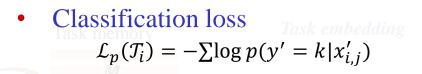
• Retrieve information from memory net *M*, and obtain memory enhanced task embedding $\tilde{\tau_i}$

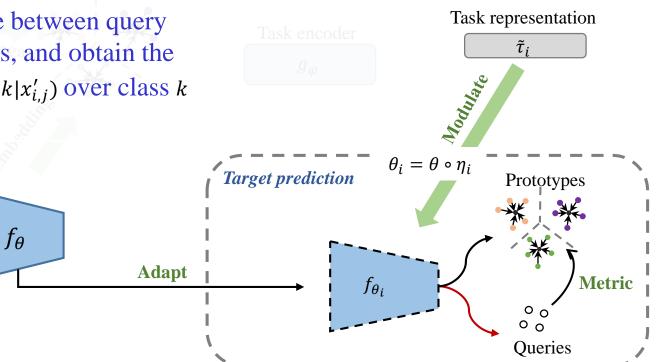
Target prediction

 D_i^{tr}

 D_i^{te}

- Task-adaptive parameter gate $\eta_i = F_c(\tilde{\tau}_i)$
- Customized parameter $q_{1} = q_{2} q_{3}$
 - $\theta_i = \theta \circ \eta_i$
- Calculate distance between query $x'_{i,j}$ and prototypes, and obtain the probability $p(y' = k | x'_{i,j})$ over class k





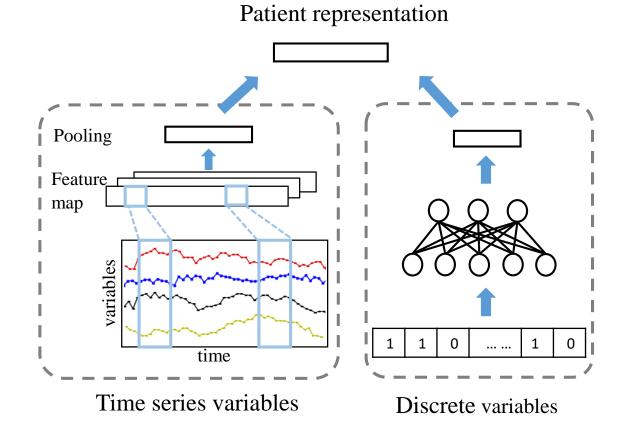
Method: Backbone Networks

Image classification

• 4 convolutional layers, each with 64 filters of kernel size 3

Disease detection

- Time series variables: one-directional convolution operation
- Discrete variables (ICD-9 codes): fullyconnected layers
- Combine the two learned vectors to obtain the representation for each patient



Experiments

tasets:	Dataset	Dataset		training		testing	
processed from <i>tiered</i> ImageNet	Dutabet			#examples	#classes	#examples	
and MIMIC-III separately		coarse	388	55,800	190	13,580	
	Image-graph	target	441	8,820	113	2,260	
		total	829	64,620	303	15,840	
		coarse	155	11,099	74	4,731	
	MIMIC	target	171	11,428	46	2,902	
selines		total	326	22,527	120	7,651	

Table: Statistics of two datasets

Baselines

Datasets:

- Metric-based: protoNet, matchingNet, relationNet, PPN ۲
- Gradient-based: MAML, MMAML, HSML ٠

Task sampling strategies

- Subgraph sample: each task is sampled from one subgraph; heterogeneous tasks
- Random sample: randomly select from leaf nodes to form a task ٠

Experiment: results on image classification

Methods	Subgraph sampling			Random sampling			
	5-way 1-shot	5-way 5-shot	10-way 1-shot	5-way 1-shot	5-way 5-shot	10-way 1-shot	
MAML	38.12±1.06%	53.82±1.14%	21.15±0.91%	47.50±1.04%	60.90±1.10%	32.70±0.67%	
MMAML	$39.60 \pm 0.84\%$	$54.23 \pm 1.19\%$	$23.05 \pm 1.16\%$	$47.34{\pm}1.05\%$	$61.96 \pm 0.88\%$	$32.40 \pm 1.20\%$	
HSML	$38.14 \pm 1.01\%$	$54.85 \pm 1.08\%$	$21.36 \pm 1.03\%$	$46.56 \pm 1.01\%$	$62.05 \pm 0.98\%$	$32.68 \pm 0.66\%$	
MatchingNet	38.21±1.08%	50.64±1.07%	$25.16 \pm 0.75\%$	47.37±1.04%	64.03±0.81%	33.87±0.64%	
ProtoNet	$38.50 \pm 1.03\%$	$54.31 \pm 1.06\%$	$25.29 \pm 0.63\%$	$46.95 {\pm} 1.04\%$	65.73±0.96%	$33.65 \pm 0.69\%$	
RelationNet	$36.46 \pm 1.06\%$	$51.87 \pm 1.01\%$	$23.40 {\pm} 0.73\%$	$49.94{\pm}1.06\%$	$65.89 \pm 0.88\%$	$34.16 \pm 0.64\%$	
PPN	$45.08 \pm 1.04\%$	$53.32 \pm 1.05\%$	$36.32 \pm 1.23\%$	$56.35 \pm 1.01\%$	$65.90 \pm 0.92\%$	$49.47 \pm 1.31\%$	
TAdaNet	$48.85 {\pm} 1.17\%$	55.29±1.13%	$38.55 \pm 1.31\%$	60.01±0.98%	69.38±0.90%	52.20±1.24%	

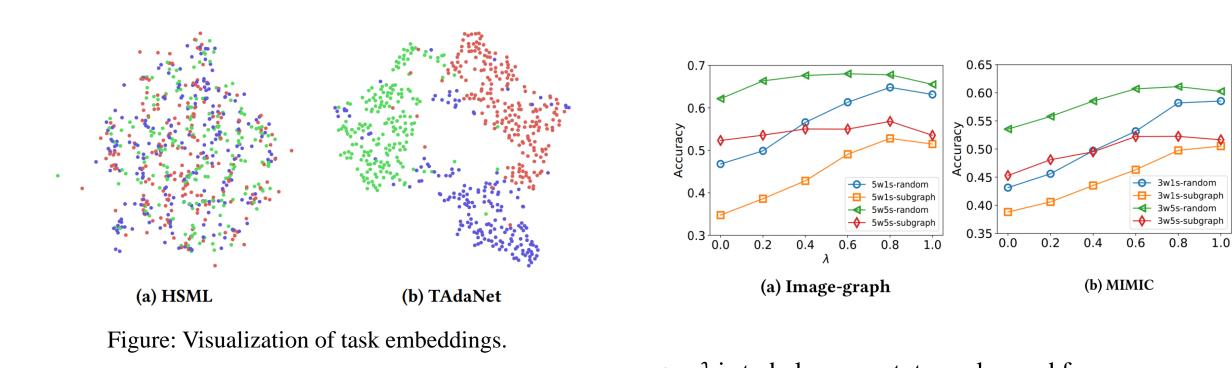
- Performing classification under subgraph sampling is more difficult than under random sampling.
- Graph information is especially helpful for 1-shot learning.

Experiment: results on disease classification

Methods	Subgraph sampling			Random sampling			
	3-way 1-shot	3-way 5-shot	5-way 1-shot	3-way 1-shot	3-way 5-shot	5-way 1-shot	
MAML	$40.54 \pm 0.95\%$	45.47±0.94%	26.29±0.61%	46.20±0.97%	53.70±0.94%	31.97±0.74%	
MMAML	$41.21 \pm 0.79\%$	$46.32 \pm 1.01\%$	$26.94 \pm 0.62\%$	$45.91 {\pm} 0.98\%$	$54.93 {\pm} 0.90\%$	$32.25 \pm 0.78\%$	
HSML	$40.97 {\pm} 0.41\%$	$45.76 \pm 0.86\%$	$27.01 \pm 0.70\%$	$45.94{\pm}0.84\%$	$53.14 {\pm} 0.41\%$	$31.04 \pm 0.70\%$	
MatchingNet	39.12±0.70%	43.26±0.80%	$26.08 \pm 0.57\%$	43.87±0.77%	50.92±0.92%	29.64±0.63%	
ProtoNet	$38.68 \pm 0.68\%$	$46.24 \pm 0.97\%$	$25.79 \pm 0.54\%$	$42.92 {\pm} 0.72\%$	$54.08 {\pm} 1.00\%$	$29.61 \pm 0.65\%$	
RelationNet	$39.00 \pm 0.87\%$	$42.46 \pm 0.96\%$	$21.38 {\pm} 0.43\%$	$43.85 {\pm} 0.89\%$	$52.23 \pm 0.95\%$	$28.67 \pm 0.61\%$	
PPN	$45.59 {\pm} 0.85\%$	$50.55 \pm 0.99\%$	$30.67 {\pm} 0.67\%$	$51.54 {\pm} 0.90\%$	$58.16 {\pm} 0.93\%$	$38.59 \pm 0.68\%$	
TAdaNet	$49.74 {\pm} 0.92\%$	$52.05{\pm}0.91\%$	$32.56 {\pm} 0.67\%$	$54.06{\pm}0.94\%$	59.05±0.92%	40.31±0.72%	

- Performing classification under subgraph sampling is more difficult than under random sampling.
- Graph information is especially helpful for 1-shot learning.

Experiment: analysis



• λ is to balance prototypes learned from example mean and neighbors aggregation.

• TAdaNet learns more accurate task embeddings than HSML.

Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li. Hierarchically Structured Meta-learning. ICML 2019

