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Introduction

 Limited Training Data
• Image Classification

• Disease Prediction

Training images Testing images

?

Patients with different diseases 
New patients

?
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 Meta-learning
• Learn transferable knowledge from multiple training tasks and generalize to new tasks 

with limited supervised experience

• An effective approach for few-shot learning

 Popular methods 
• Learn global initializations, metric or optimizers

• Assume the globally shared information can be transferred across all tasks

global initializations metric 



Challenges

 Task heterogeneity
• Task distributions can be diverse

• Global parameters may not well handle tasks with different underlying distributions

 Recent approaches
• Learn task embeddings by aggregating data examples or handcrafted structure

• Customize global initializations or metric with task-specific conditioning

• Rely purely on data itself to learn task-relationships

Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li. Hierarchically Structured Meta-learning. ICML 2019

Vuorio R, Sun SH, Hu H, Lim JJ. Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation. NeurIPS 2019.

Customize

How to effectively capture and utilize task relationships?



 Domain knowledge often exhibits in the form of graphs.

 In the meta-learning setting, a task contains several classes that are represented as nodes in the 

graph.

External Knowledge
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Image category hierarchy

For image data
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and sense organs
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nervous system

Alzheimer’s 
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Disease ontology

For patient data



Our Method

 Incorporate domain knowledge represented in the graph

 Enrich data representation
• Allow message passing across nodes of the given category graph for representation 

learning

 Enhance task relationships
• Produce task-aware parameter adjustment based on task embeddings



Method: Problem Setting

 A task 𝒯𝑖
• Sampled from a complex distribution 𝑝(𝒯)

• Contain support set 𝐷𝑖
𝑡𝑟 and query set 𝐷𝑖

𝑡𝑒

• 𝑁-way 𝐾-shot classification

 Hierarchy graph
• Node: class

• Edge: parent -> child relationship

• Leaf nodes: few-shot target classes

• Ancestor nodes: coarse classes

 Assumptions
• A task is considered more similar to another task sharing nodes in the graph, than the one that has 

disjoint classes with it.

• Similar tasks should share more information and have similar model parameters.

target class

coarse class



Method: TAdaNet
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 Leverage the 

information on

hierarchy graph and 

transferable knowledge 

from related tasks 

 Learn task-adaptive 

metric space for target 

prediction

 Overall framework

Graph-enriched prototypes



Method: TAdaNet
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 Learn graph-enriched prototype representations

• Initial prototype 𝑐𝑖
𝑘,0

representation for a class 𝑘

• Aggregate neighbor embeddings 

through graph attention to obtain 

graph-enriched prototype 𝑐𝑖
𝑘,𝐿

• Obtain updated prototype 𝑐𝑖
𝑘

𝑐𝑖
𝑘 = 1 − 𝜆 𝑐𝑖

𝑘,0 + 𝜆𝑐𝑖
𝑘,𝐿

Graph-enriched prototypes



Method: TAdaNet
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 Learn task-embeddings

• Aggregate support examples 

in each task with mean 

pooling

𝜏𝑖 =
1

𝑁𝐾
∑𝑔𝜙(𝑥𝑖,𝑗)

• Regularize the embeddings 

not far away from graph-

enriched prototypes

ℒ𝑐 𝒯𝑖 = ∑|𝑐𝑖
𝑘 −

1

𝑛𝑖
𝑡𝑟,𝑘∑𝑔𝜙 𝑥𝑖,𝑗 |𝐹

2

• Retrieve information from memory 

net 𝑀, and obtain memory enhanced 

task embedding ෥𝜏𝑖



Method: TAdaNet
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 Target prediction

𝜃𝑖 = 𝜃 ∘ 𝜂𝑖

• Task-adaptive parameter gate

𝜂𝑖 = 𝐹𝑐( ǁ𝜏𝑖)

• Customized parameter
𝜃𝑖 = 𝜃 ∘ 𝜂𝑖

• Calculate distance between query 

𝑥𝑖,𝑗
′ and prototypes, and obtain the 

probability 𝑝(𝑦′ = 𝑘|𝑥𝑖,𝑗
′ ) over class 𝑘

• Classification loss

ℒ𝑝 𝒯𝑖 = −∑log 𝑝(𝑦′ = 𝑘|𝑥𝑖,𝑗
′ )

Task representation

ǁ𝜏𝑖



 Image classification
• 4 convolutional layers, each with 64 filters of kernel size 3

Method: Backbone Networks
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 Disease detection
• Time series variables: one-directional 

convolution operation

• Discrete variables (ICD-9 codes): fully-

connected layers

• Combine the two learned vectors to obtain 

the representation for each patient



Experiments

 Datasets: 
• processed from tieredImageNet

and MIMIC-III separately

 Baselines
• Metric-based: protoNet, matchingNet, relationNet, PPN

• Gradient-based: MAML, MMAML, HSML

 Task sampling strategies
• Subgraph sample: each task is sampled from one subgraph; heterogeneous tasks

• Random sample: randomly select from leaf nodes to form a task

Table: Statistics of two datasets



Experiment: results on image classification

• Performing classification under subgraph sampling is more difficult than under random sampling.

• Graph information is especially helpful for 1-shot learning.



Experiment: results on disease classification

• Performing classification under subgraph sampling is more difficult than under random sampling.

• Graph information is especially helpful for 1-shot learning.



Experiment: analysis

Figure: Visualization of task embeddings.

• TAdaNet learns more accurate task 

embeddings than HSML.

Huaxiu Yao, Ying Wei, Junzhou Huang, Zhenhui Li. Hierarchically Structured Meta-learning. ICML 2019

• 𝜆 is to balance prototypes learned from 

example mean and neighbors aggregation.
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