

A Multi-Task Framework for Monitoring Health Conditions via Attention-based Recurrent Neural Networks

Qiuling Suo¹, Fenglong Ma¹, Giovanni Canino², Jing Gao¹, Aidong Zhang¹, Pierangelo Veltri², Agostino Gnasso²

¹ University at Buffalo, NY, USA;
 ² Magna Graecia University, Catanzaro, Italy

Modeling longitudinal healthcare data is challenging

Background

- Heterogeneous: static & dynamic variables
- Irregular sampled: patient's irregular visits, incomplete recording, etc.
- Results need to be reasonably interpreted
- Monitor health record sequences using machine learning method
 - Able to handle the temporality of multivariate sequences
 - Able to memorize the long-term dependencies among variables
 - Regression or Markov models: memoryless, may miss severe symptoms in the past

Prediction Framework

Each visit contains multiple variables.

How to learn an appropriate representation for the longitudinal health data?

RNN for Sequences

AMIA 2017 | amia.org

RNN for Sequences

- Can memorize the characteristics of sequential variables
- GRU variant uses reset gate and update gate to control how much information from previous state should keep around
- Limitations:
 - Get more impact from last few timestamps, and may not discover major influences from earlier time
 - May not be able to memorize all the past information of long sequences
- Adding attention mechanism to RNN

Attention Mechanism

Automatically calculate the importance of each past visit to current prediction

Fig. Location based attention.

Get weight solely from current state h_i $\alpha_{ti} = f(Wh_i + b)$

Aggregate past information in context vector c_t

$$c_t = \sum_{i=1}^{t-1} \alpha_{ti} h_i$$

- Combine context vector c_t and current hidden state h_t $\tilde{h}_t = f(W[C_t; h_t])$
 - \tilde{h}_t is the latent representation for all the past visits

Attention Mechanism

 To capture the relationships between current hidden state and all the previous states

Fig. General attention and concatenation-based attention.

• Measure relationship between h_t and h_i $\alpha_{ti} = f(h_t^{T}Wh_i)$ General attention

 $\alpha_{ti} = vf(W[h_t; h_i])$ concatenation-based attention

- Aggregate past information in context vector c_t
- Combine context vector c_t and current hidden state h_t
- *h
 _t* is the latent representation for all the past visits

Multi-task Learning Framework

Multi-diagnoses prediction

- Predict the status of multiple diagnoses
- Each task is to predict one diagnosis
- Each diagnosis has multiple severity levels

Multi-task learning:

- Learn a shared representation from all the features
- Perform task-specific prediction on top of the shared information

M is the number of tasks(diagnosis variables we monitor)

Two Real World Examples

- The Study of Osteoporotic Fractures (SOF)
 - Predict bone health status (normal, osteopenia and osteoporosis) of different body regions (hip, femoral neck, etc)
- Cardiovascular disease (CD) data from University Hospital of Catanzaro, Italy
 - Predict level (normal, low/high abnormal) of different blood tests (MYO, CKM, TRHS, etc) Table: Statistics of datasets

Dataset	SOF	CD
Number of patients	5,318	2,055
Number of visits	22,313	18,758
Average number of visits per patient	4.19	9.13
Number of normal claims	25,145	221,642
Number of low abnormal claims	55,399	17,407
Number of high abnormal claims	31,021	79,837
Total number of features	42	17
Number of monitored diagnoses	5	17

Prediction results

Method	Osteoporosis fracture		Cardiovascular blood test		
in como a	Avg.# Correct	Accuracy	Avg.# Correct	Accuracy	
Median	10,509	$0.8209 {\pm} 0.0057$	32,253	0.7616 ± 0.0013	
LR	10,125	$0.7909 {\pm} 0.0069$	34,836	$0.8225 {\pm} 0.0077$	
RNN	10,769	$0.8412{\pm}0.0042$	36,167	$0.8540{\pm}0.0051$	
RNN_l	10,822	$0.8454{\pm}0.0031$	36,443	$0.8605 {\pm} 0.0056$	
RNN_q	10,805	$0.8440{\pm}0.0027$	36,423	$0.8600 {\pm} 0.0059$	
RNN_c^{J}	10,816	$0.8449 {\pm} 0.0023$	36,560	$0.8632{\pm}0.0051$	

Baselines

- Median considers each diagnosis separately
- Logistic regression (LR) feeds input directly into classifiers, not memorizing historical information
- RNN: Memorize long-term dependencies
- RNN+attention
 - RNN_l location-based attention, RNN_g general attention, RNN_c concatenation-based attention
 - Fully take all the previous visit information for prediction

Visit Interpretation (Case Study)

 Attention score is used to measure the importance of historical visits to current prediction

- The last visit is usually the most important. (patient 1, 4&5)
- Attention mechanism can identify earlier important visits (patient 2&3)
- Interpreting visit importance can help doctors to better monitor disease progression

visits on SOF data.

Visit Interpretation (Case Study)

Table: BMD diagnoses and attention scores of 2nd patient. 0 is normal, 1 is osteopenia. Note that 2 (osteoporosis) does not occur for this patient.

Diagnoses\Visits	V_2	V_3	V_4	V_5	V_6
Total hip	0	0	0	0	0
Femoral neck	1	1	0	0	1
Intertrochanteric	0	0	0	0	0
Trochanteric	0	0	0	0	0
Wards	1	1	1	1	1
Attention weights	0.290	0.361	0.187	0.162	_

- Using V_1 to V_5 , predict V_6
- V₄ and V₅ are closer to V₆ in terms of time, V₂ and V₃ have the same diagnoses as V₆.
- Attention mechanism assigns larger weights to V₂ and V₃, indicating the variable conditions are similar to V₆.

Conclusion

RNN architecture

- memorize health characteristics of longitudinal records
- promising results on predicting risk of diseases

Attention mechanism

- further improve accuracy, and interpret visit importance
- provide suggestions for doctors to pay attention on information from specific time points
- Monitor multiple diagnoses simultaneously
 - learn shared hidden causes and confounding risks
 - can help doctors to make more precise decisions on controlling risks

Questions

Question: RNN is designed to memorize sequential information by recursively updating its hidden states. In our longitudinal health data prediction, we add attention mechanism on RNN in the visit level. The advantage of using attention mechanism is:

- A. Reduce the dimension of feature representation
- B. Measure the contribution from historical states
- C. Extract high level abstract features
- D. Investigate feature correlations

- A. Reduce the dimension of feature representation
- **B.** Measure the contribution from historical states
- C. Extract high level abstract features
- D. Investigate feature correlations

Explanation: Attention mechanism makes RNN more powerful. RNN is impacted more by the latest information, and may not be able to discover major influences from earlier timestamps. We add attention in the visit level, to measure the importance of each visit timestamps. The attention based RNN can take all the previous visit information into consideration, assign different importance scores for the past visits.

Thank you!

