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Abstract

Monitoring the future health status of patients from the historical Electronic Health Record (EHR) is a core research
topic in predictive healthcare. The most important challenges are to model the temporality of sequential EHR data and
to interpret the prediction results. In order to reduce the future risk of diseases, we propose a multi-task framework
that can monitor the multiple status of diagnoses. Patients’ historical records are directly fed into a Recurrent Neural
Network (RNN) which memorizes all the past visit information, and then a task-specific layer is trained to predict mul-
tiple diagnoses. Moreover, three attention mechanisms for RNNs are introduced to measure the relationships between
past visits and current status. Experimental results show that the proposed attention-based RNNs can significantly
improve the prediction accuracy compared to widely used approaches. With the attention mechanisms, the proposed
framework is able to identify the visit information which is important to the final prediction.

1 Introduction

Disease monitoring is often limited by physician experience, test time, economic barriers and so on. The Electronic
Health Record (EHR), which consists of longitudinal health information of patients, is a valuable source for ex-
ploratory analysis to monitor diseases and assist clinical decision making. However, due to the complexity of EHR
data, the efficient mining of EHRs is not trivial. Firstly, EHR data is heterogeneous which contains various types of
features. For example, type of visit is a categorical feature while body mass index is continuous. In addition, some
features are static through the lifetime while some change dynamically. Models should be able to capture the essence
of heterogeneous features. Secondly, the data is inherently sparse and noisy, due to patient’s irregular visits, absence
of tests, and incomplete recording, etc. Thirdly, result interpretation in healthcare applications is essential, and the
lacking of interpretability often hinders the adaption of models in clinical settings. Thus, how to correctly model het-
erogeneous and sparse EHR data and reasonably interpret the prediction results is a challenging problem for disease
prediction.

Recent work has made rapid progress in utilizing EHRs for predictive modeling tasks in healthcare, including pre-
dicting unplanned readmission1, early prediction of chronic disease2, adverse event detection3 and monitoring disease
progression4. In these settings, the EHRs are typically represented as temporal sequences of medical visits, and each
visit contains a set of objects (such as diagnosis and procedure codes). The main idea is to learn a good representation
of a patient’s historical health information, in order to improve the performance of the prediction for future risks. To
capture the progression of the patient’s health status, much effort has been made on regression models5 and Markov
models6. However, these models cannot take into account the long-term dependencies of diagnoses, which may miss
several severe symptoms in the past and reduce the performance of disease monitoring.

In order to model the dependencies of diagnoses, deep leaning techniques, such as recurrent neural networks, can
be employed. Recent work1, 2, 7–9 shows that deep learning can significantly improve the prediction performance. To
handle the temporality of multivariate sequences, dynamically modeling the sequential data is necessary. Recurrent
neural networks (RNNs), in particular Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), have
achieved stat-of-the-art performance in handling long-term dependencies and nonlinear dynamics. Taking advantage
of the capability of RNN in memorizing historical records, multiple recent models based on RNNs are employed
for deriving accurate and robust representations of patient visits. The work by Lipton et al.10 applies LSTM to a
multilabel classification task for diagnosing multiple diseases in the future, and the contemporary work by Choi et



al.11 applies GRU to predict codes for subsequent visits. Both of them show the efficacy of basic RNN models in
modeling longitudinal healthcare data. Among the state-of-the-art models, RETAIN12 adopts a temporal attention
generation mechanism to learn both visit level and code level weights; GRAM13 is a graph-based attention model,
which uses medical ontologies to handle data insufficiency and combines with an RNN to learn robust representations;
and Diploe14 uses bidirectional recurrent neural networks (BRNNs) to further improve the prediction accuracy.

The aforementioned models are RNN-based frameworks which use medical codes as inputs to predict whether the
diagnosis or treatment will appear in the future visit, i.e., binary prediction. However, for some diseases, the doctor
may care about the transition and severity level of the clinical event, i.e., multiple prediction. For example, if a
person is likely to have osteopenia, the doctor may suggest more exercises and supplements, while if osteoporosis
occurs, medications will be necessary. To measure the severity of diagnoses, the diagnosis values may be discretized
into multiple status: normal range and abnormal range of different severity (i.e. low/high abnormal range), following
doctor’s advice or medical references. As a disease may be characterized by multiple important observations or
diagnoses, we need to monitor these variables simultaneously.

In this paper, our goal is to predict the status of multiple diagnoses (or observations), with each diagnosis having
multiple severity levels. We form our problem as multi-task learning, which first learns a shared representation from
all the features, and then performs task-specific predictions. We propose an attention-based RNN model to monitor
patient’s longitudinal health information. First, we use an RNN to memorize all the information from historical visits,
and then attention mechanisms to measure visit importance. Based on the latent representation, we train multiple
classifiers and each focuses on the prediction of a specific task. We perform our model on two applications: predicting
chronic states for bone health, and monitoring BloodTest values for cardiovascular disease. Our main contributions
can be summarized as follows:

• We propose a multi-task framework to monitor the future status of different clinical diagnoses. We process the
monitored diagnoses to multiple severity status following medical references, which can help doctors to make
more precise decisions on controlling risks.

• We employ three attention mechanisms to evaluate the importance of previous visits to prediction tasks. This
gives the explanation of visit importance, which can provide suggestions for doctors to pay more attention on
the information from a specific timestamp.

• Our experiments show promising results of using RNNs to handle historical health information from longitudinal
records. We empirically show that the proposed attention-based RNNs outperform widely used methods in
multi-diagnoses prediction on real world EHR datasets.

This work will result in an effective tool for the physicians to monitor disease progression for early treatment in a more
efficient way. This framework can be used real-time on a regularly scheduled basis which highlights patients whose
disease state is more likely to worsen.

2 Method

In this section, we first introduce the format of our healthcare datasets and some basic notations. Then we describe the
details of the proposed framework, including the preliminary of RNN structure, proposed attention mechanisms, and
the multi-task model. Finally, we describe the interpretation for analyzing the importance of different visits.

2.1 Basic Notations

The EHR data contains heterogeneous variables such as diagnosis results, lab data, and physical functions. Among
them, diagnosis results are what we care about most, and we want to monitor their progression. Other variables are
risk factors that may potentially influence patient’s health status. Assume that there are N patients and M diagnoses
to be monitored, and the total number of visit records for the n-th patient is T (n). The health record of a patient can
be represented by a sequence of visits V1, V2, . . . , VT (n) . Each visit Vt is denoted by a vector of feature variables
xt. To monitor patient’s health status progression, the diagnosis results are discretized into several classes, indicating
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Figure 1: An example of health records of the n-th patient.

the severity level of the disease, following doctor’s opinions or medical references. For example, in a patient’s visit
for bone health test, bone mineral density (BMD) in different areas such as femoral neck and intertrochanteric is
measured, and the X-ray scan results can be diagnosed as normal, osteopenia and osteoporosis. We want to predict the
severity range of BMD value in each bone area in this patient’s next visit. For simplicity, we describe the proposed
method for a single patient and drop the superscript (n) in the following notations when it is unambiguous. Figure 1
illustrates the health records of one patient in our data. The patient has multiple visits, and each visit contains multiple
variables. Each monitored variable falls into a severity range. Suppose that we are currently at time t and want to
know the diagnoses at time (t+1), this patient’s historical records from V1 to Vt can be utilized for the training of the
model.

2.2 Model

The basic component of our framework is gated recurrent unit, which is a state-of-the-art deep learning architecture
for modeling long range sequences. To further improve its performance, we apply attention mechanisms to measure
the importance of historical sequences. To predict the status of multiple diagnoses, we add a multi-task classification
layer on top of the learned representations.

Recurrent Neural Network

Recurrent neural network (RNN) captures the characteristics of the input sequence by recursively updating its internal
hidden states. Figure 2(a) shows the unfolded RNN structure for a general classification task. For the first visit V1 (i.e.,
t = 1), RNN learns a hidden state h1 to represent the input feature vector x1; as time moves to t = 2, feature vector x2

together with h1 are fed into the RNN to update parameters in the network, and the learned hidden state h2 contains
information from both x2 and x1. Through updating the network parameters recursively, the hidden state ht learns all
the previous information from x1 to xt−1. Then a softmax classifier is applied on ht to perform classification. As the
parameters of the network are shared by each visit, RNN can handle patients with different visit lengths.

We implement our RNN with Gated Recurrent Units (GRU)15, which has been shown to have comparable performance
as Long-Short Term Memory (LSTM), while employing a simpler architecture. The structure of GRU is shown in
Figure 2(b). A GRU has two gates, a reset gate r and an update gate z. Intuitively, the reset gate determines the
combination of the new input and the previous memory, which allows the hidden layer to drop irrelevant information
that is not useful to the prediction, and the update gate controls how much information from the previous hidden layer
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Figure 2: Illustration of RNN models.
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Figure 3: Attention mechanisms.

should keep around. The mathematical formulation of GRU can be described as follows:

zt = σ(Wzxt + Uzht−1 + bz), rt = σ(Wrxt + Urht−1 + br)

h̃t = tanh(Wxt + rt ◦ Uht−1 + bh), ht = zt ◦ ht−1 + (1− zt) ◦ h̃t
(1)

where ◦ denotes the entry-wise product, σ is the activation function, rt and zt represent the reset gate and update gate
at time t respectively, h̃t is the intermediate memory unit, and ht is the hidden unit. Matrices Wr, Wz , W , Ur, Uz , U
and vectors br, bz , b are model parameters to be learned. At time t, we take the hidden state ht to predict the labels of
time (t+ 1).

Attention Mechanism

As mentioned in the above section, RNN can remember the past information for future prediction. However, it is
limited to only a few latest steps, with more impact from later ones, and may not be able to discover major influences
from earlier timestamps. Therefore, we apply attention mechanisms to memorize the effect from long-time depen-
dencies, which have gained success in many tasks. In neural machine translation18, the attention mechanism can be
intuitively described as follows: given a sentence of length S in the original language, RNN is adopted to generate the
word representations h1, . . . ,h|S|. To find the t-th word in the target language, we assign each word in the original
language an attention score αti, and then calculate a context vector ct =

∑|S|
i=1 αtihi to perform prediction. Through

attention mechanism, RNN can focus on specific words when generating each target word. Similarly, in diagnoses
prediction, we use a temporal attention mechanism to predict medical results in the (t+ 1)-th visit, according to visit
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Figure 4: Overview of the proposed model.

records from x1 to xt. The hidden state ht from the t-th visit can be estimated as a representation for the (t + 1)-th
visit. However, it may not contain enough long-term visit information. Therefore, we need to derive a context vector
ct which captures relevant information to help prediction. We propose three methods to compute attention score αt

in order to obtain the context vector ct: location-based attention, general attention and concatenation-based attention.

The attention mechanisms are illustrated in Figure 3. The general procedure goes as follows: we first obtain a set of
hidden states through the GRU layer, and then calculate the attention score αt for each of them, in order to obtain the
context vector ct; an attentional hidden state h̃t is then calculated by combining ct and ht. Thus h̃t contains both
current and historical information. Location-based attention, as in Figure 3(a), calculates the attention score solely
from each individual hidden state hi(1 6 i 6 t − 1) using formula: αti = W T

αhi + bα, where W α and bα are
parameters to be learned. Since location-based attention mechanism only considers each hidden state individually, it
does not capture the relationships between the current hidden state and all the previous hidden states. The other two
attention mechanisms, as shown in Figure 3(b), calculate attention weight αti by considering the relationship between
ht and hi. General attention uses a weight matrix W α to connect ht and hi through formula: αti = hTt W αhi.
For concatenation-based attention, we first concatenate the current hidden state ht and the previous state hi, and
then calculate a latent vector by multiplying a weight matrix W α. Thus the attention weight vector is generated as:
αti = v

T
αtanh(W α[ht;hi]).

After obtaining αt, we can obtain the context vector ct through formula ct =
∑t−1
i=1 αtihi, which contains the

weighted hidden representations of the past visits from x1 to xt−1. To combine the information from context vector
ct and the current hidden state ht, we employ a simple concatenation layer to generate an attentional hidden state h̃t
using h̃t = tanh(W c[ct;ht]), where Wc is the weight matrix to be learned. h̃t contains all the information from x1

to xt, such that the prediction task can be performed on top of h̃t.

Multi-task Diagnosis Prediction

Our task is to predict the status of multiple measurement results at the time (t+1) given the historical records from x1

to xt. Figure 4 shows a high-level overview of the proposed model. Given the information from time 1 to t, the i-th
visit’s health record xi is fed into an RNN network, which outputs a hidden state hi as the representation of the i-th
visit. Along with the set of hidden states {hi}t−1i=1 , we compute their relative importance αt, and then obtain a context
state ct. From the context state ct and the current hidden state ht, we can obtain an attentional hidden state h̃t, which
is used to predict diagnoses in the (t+1)-th visit. For the prediction, we use M softmax classifiers, which correspond
to the M different diagnoses, to predict the severity level for each diagnosis. The representation ht contains the visit
information of all the input features, and the task-specific classifier focuses on the prediction of each diagnosis.



To perform the multi-task classification, we feed the hidden state h̃t into each task through a classification layer. Thus
the information of the k-th diagnosis in the (i + 1)-th visit can be produced by ŷkt = Softmax(W k

s h̃t + b
k
s), where

W k
s and bks are parameters to be learned. We use cross-entropy between the ground truth yt and the predicted ŷt

to calculate the classification loss. The total loss is the sum of cross-entropy among all the diagnoses categories in
predicted visits of patients. The loss function L can be described as:

L = − 1

N

N∑
n=1

1

T (n)

T (n)∑
t=1

M∑
k=1

{
(ykt )

>log(ŷkt ) + (1− ykt )>log(1− ŷ
k
t )
}
, (2)

where N is the number of patients, M is the number of monitored diagnoses, and T (n) is the number of visits of
the n-th patient. In the training procedure, we estimate parameters in the proposed models by minimizing the loss
function (2).

Interpretation

In healthcare applications, giving interpretation of the learned representations is important. Here we evaluate the
contribution of the past visits to the prediction of future status in the process of learning latent representations. Since we
adopt attention mechanisms, the importance of each visit can be found by analyzing its attention score. For example,
for the t-th prediction, if the attention score αti is large, then the probability of the (i+ 1)-th visit information related
to the current prediction is high. In most cases, the last visit is usually important for chronic diseases, as patient’s
health status usually does not change much during two visits. However, since disease progression is complex and
affected by many factors, the disease can get better or worse. Thus the health information of specific earlier visits may
be more important for some patients. Therefore, the attention mechanism can help doctors to pay attention to specific
important visits in the past.

3 Experiments

We conduct experiments on two real-word datasets, and evaluate the performance of the proposed attention-based
RNN models compared to other prediction methods. Moreover, we use case studies to understand the behavior of the
proposed models.

Datasets

Study of Osteoporotic Fractures Dataset. The study of osteoporotic fracture (SOF)20 is the largest and most compre-
hensive study focused on bone diseases. It includes 20 years longitudinal data about osteoporosis of 9,704 Caucasian
women aged 65 years and older. Potential risk factors and confounders belong to several groups such as demographics,
family history, and lifestyle. We process people’s bone health diagnoses of different areas using the bone mineral den-
sity (BMD) values by comparison with young healthy references17, resulting in three BMD levels: normal, osteopenia
and osteoporosis.

BloodTest Dataset. This dataset21 contains multivariate blood tests of 3,000 patients affected by cardiovascular disease
from the University Hospital of Catanzaro, Italy. For each patient, there are several blood tests during their in-hospital
stay, such as hemoglobin, triglycerides, glucose, and calcium. As suggested by doctors, we pick 12 blood analytes
variables which are important to cardiovascular. Each variable has a normal range provided by doctors. Knowing
variable transitions in advance can alarm doctors to take actions before the abnormal occurs, in order to reduce the risk
of diseases.

As a common issue of EHR, these datasets are irregular sampled and sparse, so that data preprocessing is needed. For
each person, we remove those visits without any monitored variables recorded, and remove patients with less than
three visits. We use simple imputation to fill missing variables. For the SOF data, we fill the missing variables with
the values in the previous visit. For the BloodTest data, we impute missing sequences (where a single variable is
missing entirely) with a clinical normal value. This is based on an assumption that clinicians believed it to be normal
so that they did not measure it. Other missing variables are filled with the median value of other patients. After data
preprocessing and extraction, we obtain the datasets with statistics shown in Table 1.



Table 1: Statistics of datasets.

Dataset SOF BloodTests

Number of patients 5,318 2,055
Number of visits 22,313 18,758
Average number of visits per patient 4.19 9.13

Number of normal claims 25,145 221,642
Number of low abnormal claims 55,399 17,407
Number of high abnormal claims 31,021 79,837

Total number of features 42 17
Number of monitored diagnoses 5 17

Experimental Setup

For each patient, we want to predict the diagnosis results of each visit based on his/her previous records. To validate
the performance of the proposed models in this diagnosis prediction task, we conduct experiments on two categories
of methods: baselines and RNN-based models.

We set up two kinds of baselines. The first baseline is to use the median value of each monitored variable from V1 to
Vt to predict Vt+1 for continuous variables. This is based on a heuristic assumption that the most frequent state is more
likely to occur. For each patient, we use his/her most popular health status as the current status, regardless of time
variations. The second baseline is a multi-task logistic regression (LR). To predict information at Vt+1, we feed the
health records at Vt to a logistic regression model with multiple softmax classifiers. This can be viewed as a simplified
model of Figure 4 without using RNNs and attention mechanism to learn latent states. This model only considers the
effect from previous one time step, rather than long time history.

For the proposed methods, we have several variants, including a plain RNN or attention-based RNNs. For RNN,
the architecture is similar to the proposed model, but without the attention mechanism. RNNl, RNNg and RNNc
are three attention-based RNN models, whose architecture is shown in Figure 4. RNNl, RNNg and RNNc stands for
location-based, general and concatenation-based attention respectively. The attention mechanism of RNNl can be seen
in Figure 3(a), and attention mechanism of RNNg and RNNc can be seen in Figure 3(b).

The proposed approaches are implemented with Theano 0.7.022. Adadelta16 with a mini-batch of 50 patients is used to
optimize Eq. (2). To evaluate prediction performance, we define the accuracy as the ratio between correctly predicted
severity status and the total number of variables to be predicted.

Results of Diagnosis Prediction

Table 2 shows the accuracy of the proposed approaches in comparison with baselines on the two datasets. For each
patient in the testing set, we predict the health conditions for the subsequent visits using his/her historical health
records. For the SOF dataset, we predict the probability of BMD states of normal, osteopenia and osteoporosis for
different measurements such as hip and femoral neck. For the BloodTest dataset, we predict the probability of each
blood analyte falling into normal, low abnormal and high abnormal. The results are averaged over 5 random trials of
5-fold cross validation. Avg.# Correct represents the average number of correctly predicted claims of 5 random trials.
Accuracy represents the ratio between correctly predicted claims and total number of claims to be predicted.

We can observe that RNN based methods outperform other baselines. The method of predicting with median values
considers each variable separately, without taking into account the time trend and feature relationships. This intuitive
method is very sensitive to noise, and cannot capture the correlation between variables. It performs the worst in
the BloodTest dataset, possibly due to the reason that variables in that dataset are not independent but have strong
correlations (e.g. MYO-CKM-TRHS-GPT-GL-GOT-LDH). Logistic regression (LR) takes the whole inputs into a
classifier with multiple softmax functions, in order to classify each monitored variable. The structure of LR can be
viewed as the framework of Figure 4 without latent representations to memorize historical information. The inputs of
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Figure 5: Attention weights of five persons, each with four visits.

LR include all the features, such that features can impact on each target task. However, there is no way for logistic
regression to memorize historical information, as it only takes information from the nearest one visit. Attention-based
RNNs outperform the above baselines. This owes to the capability of RNN in memorizing long-term dependencies
of patient’s longitudinal health records, and the attention-based mechanisms can further enhance this capability. For
the two datasets, RNNl, RNNg and RNNc can clearly outperform plain RNN. Since the prediction of RNN mostly
depends on recent visits, it may not memorize all the past information. Through attention-mechanism, RNNl, RNNg
and RNNc can fully take all the previous visit information into consideration, assign different attention scores for past
visits, and achieve better performance compared to RNN.

Table 2: Prediction performance on two datasets.

Method Osteoporosis fracture Cardiovascular blood test

Avg.# Correct Accuracy Avg.# Correct Accuracy
Median 10,509 0.8209±0.0057 32,253 0.7616±0.0013
LR 10,125 0.7909±0.0069 34,836 0.8225±0.0077
RNN 10,769 0.8412±0.0042 36,167 0.8540±0.0051
RNNl 10,822 0.8454±0.0031 36,443 0.8605±0.0056
RNNg 10,805 0.8440±0.0027 36,423 0.8600±0.0059
RNNc 10,816 0.8449±0.0023 36,560 0.8632±0.0051

Visit Interpretation

The attention mechanism can be used to understand the importance of historical visits to the current visit. As an
example, here we analyze the concatenation-based attention mechanism on the SOF dataset. Figure 5 shows a case
study for predicting the diagnoses in the sixth visit through the previous five visits. The concatenation-based attention
weights are calculated for the visits from V2 to V5 according to the hidden states h1,h2,h3 and h4. Thus, we have four
attention scores corresponding to the visits from V2 to V5. In Figure 5, we select five patients for visualization. The
X-axis represents patients, and Y-axis is the attention score calculated for each visit. We can observe that for different
patients, the attention scores learned by this attention mechanism are different.

For chronic diseases, the last visit is often the most important since patients’ health conditions change slowly. As in
the figure, for the first, fourth and fifth patients, the importance of visit increases with time going on. However, this
is not always the case due to the complexity of disease progression and impact from risk factors. Table 3 shows the
variation of bone mineral density (BMD) diagnoses and attention scores of different visits of the second patient. In
each visit, there are five different BMD diagnoses, and the values in the table indicate the severity of bone density



Table 3: BMD diagnoses and attention scores of one patient with six visits on SOF dataset. 0 is normal, 1 is osteopenia,
and 2 (osteoporosis) does not occur for this patient.

Diagnoses\Visits V2 V3 V4 V5 V6

Total hip 0 0 0 0 0
Femoral neck 1 1 0 0 1
Intertrochanteric 0 0 0 0 0
Trochanteric 0 0 0 0 0
Wards 1 1 1 1 1

Attention weights 0.290 0.361 0.187 0.162 –

loss. Although V4 and V5 are closer to V6 in terms of time, V2 and V3 have the same condition as V6. Thus health
records of V2 and V3 are more important to V6. We can see that the attention mechanism correctly assigns larger
weights to V2 and V3. As for the BloodTest dataset, using attention mechanism to memorize all the past information
is also important. An abnormal blood analyte can temporarily turn into normality via medicine, but it may fall back
after some time. Therefore, interpreting visit importance through the attention mechanism can help to better monitor
disease progression.

In diagnosis prediction, making decisions using very recent record is usually not enough, and it is important to lookup
long term health information. To understand the relationship between the length of patient medical history and the
prediction performance, we select 1,000 patients from the BloodTest dataset with more than seven visits. Table 4
shows the accuracy of RNNl in predicting the diagnoses from V2 to V7. We can see that with the number of visit
increasing, the performance can often improve. We believe that it is due to the fact that RNN is able to learn better
estimates of patient information as it memorizes longer health records.

Table 4: Prediction accuracy for V2 to V7 on BloodTest dataset.

Visit Accuracy

V2 0.8579
V3 0.8624
V4 0.8706
V5 0.8792
V6 0.8780
V7 0.8735

4 Conclusions

In this paper, we introduce attention-based RNN architectures to predict patients’ disease progression. In particular, we
monitor multiple diagnoses status simultaneously, based on patients’ historical health records. By employing recurrent
neural network, our model can remember hidden knowledge learned from previous visits. Three attention mechanisms
allow us to interpret the prediction results reasonably. Experimental results on two real world EHR datasets show the
effectiveness of the proposed attention-based RNN models for simultaneously predicting multiple diagnoses. Analysis
shows that the attention mechanisms can assign meaningful weights to previous visits when predicting the future visit
information. The proposed approach can be widely used for the prediction of a variety of different diseases.
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